Skip to main content

Root to Leaf Paths | binary tree | geeksforgeeks solution

 Root to Leaf Paths

Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree.

Example 1:

Input:
       1
    /     \
   2       3
Output: 1 2 #1 3 #
Explanation: 
All possible paths:
1->2
1->3

Example 2:

Input:
         10
       /    \
      20    30
     /  \
    40   60
Output: 10 20 40 #10 20 60 #10 30 #

Your Task:
Your task is to complete the function Paths() that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.)

Note: The return type
cpp: vector
java: ArrayList>
python: list of list

Expected Time Complexity: O(N).
Expected Auxiliary Space: O(H).

Note: H is the height of the tree.

Constraints:
1<=N<=103

Note: The Input/Ouput format and Example given, are used for the system's internal purpose, and should be used by a user for Expected Output only. As it is a function problem, hence a user should not read any input from the stdin/console. The task is to complete the function specified, and not to write the full code.



solution:


void paths(Node * root , vector<int>t ,vector<vector<int>>&r )

    {

         if(root->left == NULL && root->right == NULL)

         { 

             t.push_back(root->data);

           r.push_back(t);

           return;

         }

         

        if(root->left != NULL)

        {   

            t.push_back(root->data);

            paths(root->left, t , r);

            t.pop_back();

        }

        if(root->right != NULL)

        {   

            t.push_back(root->data);

            paths(root->right, t , r);

            t.pop_back();

        }

             

    }

vector<vector<int>> Paths(Node* root)

{

    vector<int>t ;

    vector<vector<int>>r;

    paths(root , t , r);

    return r;

}



Comments

Popular posts from this blog

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...

Regular Expression Matching Leetcode Solution

Regular Expression Matching Given an input string s and a pattern p, implement regular expression matching with support for '.' and '*' where: '.' Matches any single character.​​​​ '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). Example 1: Input: s = "aa", p = "a"  Output: false  Explanation: "a" does not match the entire string "aa". Example 2: Input: s = "aa", p = "a*"  Output: true  Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa". Example 3: Input: s = "ab", p = ".*"  Output: true  Explanation: ".*" means "zero or more (*) of any character (.)". Constraints: 1 <= s.length <= 20 1 <= p.length <= 20 s contains only lowercase English letters. p contains only lowercase Englis...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...