Skip to main content

solution: Special Fibonacci | codechef | Problem Code: FIBXOR01

 

Special Fibonacci Problem Code: FIBXOR01

Sankalp recently learned Fibonacci numbers and now he is studying different algorithms to find them. After getting bored of reading them, he came with his own new type of numbers. He defined them as follows:

You are given three integers a,b and n , calculate f(n).



Input

The input contains one or more independent test cases.

The first line of input contains a single integer T (1≤T≤103), the number of test cases.

Each of the T following lines contains three space-separated integers ab, and n (0≤a,b,n≤109) respectively.

Output

For each test case, output f(n).

Constraints

  • 1<=T<=1000
  • 0<=a,b,n<=109

Sample Input

4
86 77 15
93 35 86
92 49 21
62 27 90

Sample output

86
126
92
62

SOlution : 

This question looks like of recursion but if we think of it  and solve the equation further 

we will f(n) = f(n%3),that's why i first found n = n%3 , then make three values of n because now , n can only be 0 ,1 , 2. 

how to solve the equation the equation 

f(n) = f(n-1)^f(n-2);                                                                            .............eqn1

repacing n by n+1 , 

  we get , 

    f(n+1) = f(n)^f(n-1)                                                                    ..................eqn2

 adding eqn1 and eqn 2 

 we get , 

        f(n)^f(n+1)  = f(n-1)^f(n-2)^f(n)^f(n-1)  

 which is equal to

          f(n) ^ f(n+1) = f(n) ^ f(n-2)     

 =>  f(n+1) = f(n-2)     

  now replacing n+1 by n , 

 f(n) = f(n-3);                                          ................a

  also , f(n-3) = f(n-6)  right?                    .................b

  f(n-6) = f(n-9)                                            ................c          

and so on ,

then on adding a+b+c+........

f(n) = f(n-3*x)       where x is a random number such that 0< n - 3*x < 3 , that is it can simply the remainder after dividing it with 3.

f(n) = f(n%3);                        


#include <iostream>

using namespace std;

long long int f(int);

int main()

{

int t ; 

cin >> t;

while(t--)

{

    long int a , b , n ;

    cin >> a >> b >> n;

    long int d = a^b;

    n = n %3 ;

    if(n== 0)

    cout << a << "\n";

    if( n==1 )

    cout << b << "\n";

    if(n == 2)

    cout << d << "\n";

}

return 0;

}


Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...