Skip to main content

[PDF DOWNLOAD]The hardware hacking handbook pdf

  •  The hardware hacking handbook pdf download 
  • Download book the hardware hacking handbook
  • The hardware hacking handbook
  • pdf : The hardware hacking handbook
 




contents:
................................................................................................

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 1: Dental Hygiene: Introduction to Embedded Security . 1
Chapter 2: Reaching Out, Touching Me, Touching You:
Hardware Peripheral Interfaces . . . . . . . . . . . . . . . . . . 35
Chapter 3: Casing the Joint: Identifying Components
and Gathering Information . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 4: Bull in a China Shop: Introducing Fault Injection . . 71
Chapter 5: Don’t Lick the Probe: How to Inject Faults . . . . . . . . .
Chapter 6: Bench Time: Fault Injection Lab . . . . . . . . . . . . . . 99
Chapter 7: X Marks the Spot:
EMFI Memory Dumping of Trezor . . . . . . . . . . . . . . . . 133
Chapter 8: I’ve Got the Power:
Introduction to Power Analysis . . . . . . . . . . . . . . . . . . 155
Chapter 9: Bench Time: Simple Power Analysis . . . . . . . . . . . .
Chapter 10: Splitting the Difference: Differential Power Analysis .
Chapter 11: Advanced Power Analysis . . . . . . . . . . . . . . . . . .
Chapter 12: A DPA/SCA Lab: Breaking an AES-256 Bootloader .
Chapter 13: No Kiddin’: Real-Life Examples . . . . . . . . . . . . . . .
Chapter 14: Think of the Children: Countermeasures,
Certifications, and Goodbytes . . . . . . . . . . . . . . . . . . . . .
Appendix A: Maxing Out Your Credit Card:
Setting Up a Test Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix B: All Your Base Are Belong to Us: Popular Pinouts . . . 


  ...........................................................................................


click here to download.



Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...