Skip to main content

Google kickstart 2022 round B | Infinity Area | solution kickstart

 Infinity Area :

Problem:

Let us assume for the simplicity of this problem that the Infinity symbol is made of circles which touch externally at point S as shown below, and let us call it the center of the infinity.

You are given three integers RAB. You are currently at the center of the infinity. You will first start drawing the right circle with radius R and reach again the center of infinity. After that, you start drawing the left circle with the radius equal to the radius of last circle multiplied by A. After reaching the center of the infinity you again start drawing the right circle with radius equal to the radius of last circle divided by B (integer divison). After reaching the center of infinity you again draw the left circle with the radius equal to the radius of last circle multiplied by A.

Steps to create the infinity symbol with three circles.

You continue to draw the left and right circles as described above until the radius of the circle to be drawn becomes zero. Calculate the sum of areas of all the circles drawn. It is guaranteed that the process will terminate after finite number of steps.

Input

The first line of the input gives the number of test cases, TT lines follow.

Each line represents a test case and contains three integers RAB, where R denotes the radius of the first circle, and A and B are the parameters used to calculate the radii of the subsequent circles.

Output

For each test case, output one line containing Case #xy, where x is the test case number (starting from 1) and y is the sum of areas of all the circles drawn until radius of the circle to be drawn becomes zero.

y will be considered correct if it is within an absolute or relative error of 106 of the correct answer. See the FAQ for an explanation of what that means, and what formats of real numbers we accept.

Limits

Time limit: 20 seconds.
Memory limit: 1 GB.

Test Set 1

1T100
1R105
1A500
2×AB1000

Sample

Sample Input

2
1 3 6
5 2 5
Sample Output

Case #1: 31.415927
Case #2: 455.530935


solution:


#include<bits/stdc++.h>
using namespace std;
int main()
{
    int t;
    double pi = 3.1415926535897932;
    cin >> t;
    for(int i = 1 ; i <= t; i++)
    {
        int  r  , a , b;
        cin >> r >> a >> b;
        int t = r ;
        int chance = 1;
        float sum =0;
        while(t != 0)
        {
            sum = sum + pi*t*t;
            if(chance %2 == 1)
            {
                t = t*a;
            }
            else
            {
                t = t/b;
            }
            chance ++;
            
        }
        cout << "Case #"<<i<<": "<<  fixed<<setprecision(6) <<sum<<"\n";
        
    }
}    



Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...