Skip to main content

Regular Expression Matching Leetcode Solution

Regular Expression Matching





Given an input string s and a pattern p, implement regular expression matching with support for '.' and '*' where:

'.' Matches any single character.​​​​

'*' Matches zero or more of the preceding element.


The matching should cover the entire input string (not partial).



Example 1:

Input: s = "aa", p = "a" 
Output: false 
Explanation: "a" does not match the entire string "aa".


Example 2:

Input: s = "aa", p = "a*" 
Output: true 
Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".


Example 3:

Input: s = "ab", p = ".*" 
Output: true 
Explanation: ".*" means "zero or more (*) of any character (.)".



Constraints:

1 <= s.length <= 20
1 <= p.length <= 20
s contains only lowercase English letters.
p contains only lowercase English letters, '.', and '*'.
It is guaranteed for each appearance of the character '*', there will be a previous valid character to match.

Solution : 

class Solution {
public:
    bool isMatch(string s, string p) {

        vector<vector<bool>>dp(p.length() +1 , vector<bool>(s.length()+1 , false));
        for(int i =0 ; i < p.length() +1 ; i++)
        {
            for(int j =0 ; j < s.length() +1 ; j++)
            {
                if(i ==0 && j ==0)
                {
                    dp[i][j] = true;
                }
                else
                if(i ==0)
                {
                    dp[i][j] = false;
                }
                else
                if(j ==0)
                {
                    char pc = p[i-1];
                 
                    if(pc == '*')
                    {
                        dp[i][j] = dp[i-2][j];
                    }

                }
                else
                {
                    int pc = p[i-1];
                    int sc = s[j-1];
                    if(pc == sc || pc == '.' )
                    {
                        dp[i][j] = dp[i-1][j-1];
                    }
                    else
                    if(pc == '*')
                    {
                        dp[i][j] = dp[i-2][j];
                        if(p[i-2] == sc || p[i-2] == '.')
                        {
                            dp[i][j] = dp[i][j] || dp[i][j-1];
                        }
                    }
                 
                 
                 

                }
            }
         
        }
 

        return dp[p.length()][s.length()];
     
    }
};

Comments

Popular posts from this blog

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...