Skip to main content

Diameter of a Binary Tree

 The diameter of a tree (sometimes called the width) is the number of nodes on the longest path between two end nodes. The diagram below shows two trees each with diameter nine, the leaves that form the ends of the longest path are shaded (note that there is more than one path in each tree of length nine, but no path longer than nine nodes). 

Example 1:

Input:
       1
     /  \
    2    3
Output: 3

Example 2:

Input:
         10
        /   \
      20    30
    /   \ 
   40   60
Output: 4


Ans : 

class Solution {
  public:
    // Function to return the diameter of a Binary Tree.
    int h( Node* node)
{
    if(!node)
    {
        return 0;
    }
    
    return (max(h(node->left) , h(node->right))+1);
}

// Function to return the diameter of a Binary Tree.
int sum( Node * node)
{
    return h(node->left) + h(node->right)+ 1;
}

int max(int a , int b)
{
    return (a>b)?a:b;
}

int diameter( Node* root) 
{
    queue<Node *>q;
    
    q.push(root);
    int m  = sum(root);
    while(!q.empty())
    {
        m = max(m , sum(q.front())); 
        if(q.front()->left)
        q.push(q.front()->left);
        if(q.front()->right)
        q.push(q.front()->right);
        q.pop();
        
    }
    
    return m;
    
    
}

};


refrences : 

https://www.geeksforgeeks.org/diameter-tree-using-dfs/





Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...