Skip to main content

1996. The Number of Weak Characters in the Game | leetcode solution

 1996The Number of Weak Characters in the Game


You are playing a game that contains multiple characters, and each of the characters has two main properties: attack and defense. You are given a 2D integer array properties where properties[i] = [attacki, defensei] represents the properties of the ith character in the game.

A character is said to be weak if any other character has both attack and defense levels strictly greater than this character's attack and defense levels. More formally, a character i is said to be weak if there exists another character j where attackj > attacki and defensej > defensei.

Return the number of weak characters.

 

Example 1:

Input: properties = [[5,5],[6,3],[3,6]]
Output: 0
Explanation: No character has strictly greater attack and defense than the other.

Example 2:

Input: properties = [[2,2],[3,3]]
Output: 1
Explanation: The first character is weak because the second character has a strictly greater attack and defense.

Example 3:

Input: properties = [[1,5],[10,4],[4,3]]
Output: 1
Explanation: The third character is weak because the second character has a strictly greater attack and defense.

 

Constraints:

  • 2 <= properties.length <= 105
  • properties[i].length == 2
  • 1 <= attacki, defensei <= 105

solution :

class Solution {
public:
    bool static sort_first(vector<int>&a , vector<int>&b )
    {   
        if(a[0] == b[0])
            return a[1] > b[1];
        return a[0] < b[0];

    }
    int numberOfWeakCharacters(vector<vector<int>>& properties) {
       
          int count = 0;
         sort(properties.begin() , properties.end() , sort_first);
        int n = properties.size();
        int max_num = properties[n-1][1];
        for(int i =n-1 ; i >= 0 ; i--)
        {
                if(properties[i][1] < max_num )
                    count++;
                else
                    if(properties[i][1] > max_num)
                        max_num = properties[i][1];

        }
        return count;
        
    }
};


references : https://leetcode.com/problems/the-number-of-weak-characters-in-the-game/





Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...