Skip to main content

2007. Find Original Array From Doubled Array| Leetcode solution

 2007Find Original Array From Doubled Array

An integer array original is transformed into a doubled array changed by appending twice the value of every element in original, and then randomly shuffling the resulting array.

Given an array changed, return original if changed is a doubled array. If changed is not a doubled array, return an empty array. The elements in original may be returned in any order.

 

Example 1:

Input: changed = [1,3,4,2,6,8]
Output: [1,3,4]
Explanation: One possible original array could be [1,3,4]:
- Twice the value of 1 is 1 * 2 = 2.
- Twice the value of 3 is 3 * 2 = 6.
- Twice the value of 4 is 4 * 2 = 8.
Other original arrays could be [4,3,1] or [3,1,4].

Example 2:

Input: changed = [6,3,0,1]
Output: []
Explanation: changed is not a doubled array.

Example 3:

Input: changed = [1]
Output: []
Explanation: changed is not a doubled array.

 

Constraints:

  • 1 <= changed.length <= 105
  • 0 <= changed[i] <= 105

solution:

class Solution {
public:
    vector<int> findOriginalArray(vector<int>& changed) {
        vector<int>result;
        if(changed.size() %2 != 0)
            return {};
        unordered_map<int, int>a;
        for(int i =0 ; i < changed.size() ;i++)
        {
            a[changed[i]] += 1;
        }
        sort(changed.begin() , changed.end());
        for(int i = 0 ; i < changed.size() ; i++)
        {    
            if(changed[i] == 0 && a[changed[i]] %2 == 0 && a[changed[i]]>0)
            {
                result.push_back(changed[i]);
                a[changed[i]] -= 2;
            }
              else  
             if(a[changed[i]]> 0 && a[2*changed[i]] > 0 && changed[i] != 0)
             {
                 result.push_back(changed[i]);
                 a[changed[i]] -= 1;
                 a[2*changed[i]] -= 1;
             }
            
        }
        if(result.size() == changed.size()/2)
            return result;
        return {};
    }
};

Comments

Popular posts from this blog

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...

Regular Expression Matching Leetcode Solution

Regular Expression Matching Given an input string s and a pattern p, implement regular expression matching with support for '.' and '*' where: '.' Matches any single character.​​​​ '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). Example 1: Input: s = "aa", p = "a"  Output: false  Explanation: "a" does not match the entire string "aa". Example 2: Input: s = "aa", p = "a*"  Output: true  Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa". Example 3: Input: s = "ab", p = ".*"  Output: true  Explanation: ".*" means "zero or more (*) of any character (.)". Constraints: 1 <= s.length <= 20 1 <= p.length <= 20 s contains only lowercase English letters. p contains only lowercase Englis...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...