Skip to main content

429. N-ary Tree Level Order Traversal | Leetcode solution

 429N-ary Tree Level Order Traversal

Given an n-ary tree, return the level order traversal of its nodes' values.

Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

 

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: [[1],[3,2,4],[5,6]]

Example 2:

Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output: [[1],[2,3,4,5],[6,7,8,9,10],[11,12,13],[14]]

 

Constraints:

  • The height of the n-ary tree is less than or equal to 1000
  • The total number of nodes is between [0, 104]



solution:

/*
// Definition for a Node.
class Node {
public:
    int val;
    vector<Node*> children;

    Node() {}

    Node(int _val) {
        val = _val;
    }

    Node(int _val, vector<Node*> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        
        vector<vector<int>>result;
        queue<Node*>q1;
        queue<Node*>q2;
        q1.push(root);
        if(root == NULL)
        {   
            return result;
        }
        result.push_back({q1.front()->val});
        int i = 0;
        while(true)
        {
            vector<int>j;
        while(!q1.empty())
        {
            Node *temp = q1.front();
            vector<Node*>vect = temp->children;
            int s = vect.size();
            for(int l =0 ; l < s ; l++)
            {
                if(vect[l] != NULL)
                {
                    q2.push(vect[l]);
                    j.push_back(vect[l]->val);
                }

            }
            
            q1.pop();
            

        }   
            result.push_back(j);
            if(q2.empty())
                break;
            q1 = q2;
            while(!q2.empty())
            {
                  q2.pop();
            }
            i++;
        }
        result.pop_back();
        
      return result;
    }
};




Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...