Skip to main content

leetcode 48 solution

 48Rotate Image

You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

 

Example 1:

Rotate Image leetcode

Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[7,4,1],[8,5,2],[9,6,3]]

Example 2:

Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

 

Constraints:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

solution:

class Solution {
public:
    void swap(int& a , int &b)
    {
        int c ;
        c = a;
        a = b;
        b = c;

    }
    void transpose (vector<vector<int>>& m)
    {
        int p = m.size();
        for(int i = 0 ; i < p ; i++)
        {
            for(int j =i+1 ; j < p ; j++)
            {
                swap(m[i][j] , m[j][i] );

            }

        }

    }
    void reverse_matrix(vector<vector<int>>&m )
    {   
        int k = m.size();
        for(int i = 0 ; i < k ; i++)
        {
            for(int j = 0 ; j < k/2 ; j++)
            {
                swap(m[i][j] , m[i][k-1-j]);

            }
        }
    }
    void rotate(vector<vector<int>>& matrix) 
    {
        
        transpose(matrix);
        int l = matrix.size();
        int i =0;
        reverse_matrix(matrix );
        
    }
};


Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...