Skip to main content

766. Toeplitz Matrix || leetcode solution

 766Toeplitz Matrix

Given an m x n matrix, return true if the matrix is Toeplitz. Otherwise, return false.

A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same elements.

 

Example 1:

Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
Output: true
Explanation:
In the above grid, the diagonals are:
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]".
In each diagonal all elements are the same, so the answer is True.

Example 2:

Input: matrix = [[1,2],[2,2]]
Output: false
Explanation:
The diagonal "[1, 2]" has different elements.

 

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 20
  • 0 <= matrix[i][j] <= 99

 

Follow up:

  • What if the matrix is stored on disk, and the memory is limited such that you can only load at most one row of the matrix into the memory at once?
  • What if the matrix is so large that you can only load up a partial row into the memory at once?

solution:

class Solution {
public:
    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
    
        
        for(int i = 1; i < matrix.size() ; i++)
        {
            for(int j =1 ; j < matrix[i].size() ; j++)
            {
                if(matrix[i][j] != matrix[i-1][j-1])
                    return false;

            }

        }
        return true;
        
    }
};

Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...