15. 3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]] Explanation: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0. nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0. nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0. The distinct triplets are [-1,0,1] and [-1,-1,2]. Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1] Output: [] Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0] Output: [[0,0,0]] Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
solution :
Leetcode 15 explanation:
- we iterate the array nums using iterator `i` from 0 to sizeof(nums) -2 .
- for every element , nums[i] we apply the apply the twoSums problem concept using two pointer approach.
- we take two pointers l = i+1 and m = size -1 .
- `while(l < m && nums[l] == nums[l+1] ) l++` and `while(l < m && nums[m] == nums[m-1] ) m--` are used to avoid repeatitions.
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
int size = nums.size();
vector<vector<int>>result;
sort(nums.begin(), nums.end());
for(int i = 0 ; i < size-2 ; i++)
{ if(i ==0 || nums[i] != nums[i-1] )
{
int l = i+1;
int m = size -1;
while(l< m)
{
if(nums[l] + nums[m] + nums[i] == 0)
{
vector<int>sub_result;
sub_result.push_back(nums[i]);
sub_result.push_back(nums[l]);
sub_result.push_back(nums[m]);
result.push_back(sub_result);
while(l < m && nums[l] == nums[l+1] ) l++ ;
while(l < m && nums[m] == nums[m-1] ) m--;
l++; m--;
}
else
if(nums[l] + nums[m] < -nums[i] )
{
l++;
}
else
m--;
}
}
}
return result;
}
};
Any problem ? comment down ...
i will try to help..
Follow this blog for more interesting content.
Comments
Post a Comment