Skip to main content

Number of Operations to Make Network Connected | graph problem with solution

 There are n computers numbered from 0 to n - 1 connected by ethernet cables connections forming a network where connections[i] = [ai, bi] represents a connection between computers ai and bi. Any computer can reach any other computer directly or indirectly through the network.

You are given an initial computer network connections. You can extract certain cables between two directly connected computers, and place them between any pair of disconnected computers to make them directly connected.

Return the minimum number of times you need to do this in order to make all the computers connected. If it is not possible, return -1.

 

Example 1:

Input: n = 4, connections = [[0,1],[0,2],[1,2]]
Output: 1
Explanation: Remove cable between computer 1 and 2 and place between computers 1 and 3.

Example 2:

Input: n = 6, connections = [[0,1],[0,2],[0,3],[1,2],[1,3]]
Output: 2

Example 3:

Input: n = 6, connections = [[0,1],[0,2],[0,3],[1,2]]
Output: -1
Explanation: There are not enough cables.

 

Constraints:

  • 1 <= n <= 105
  • 1 <= connections.length <= min(n * (n - 1) / 2, 105)
  • connections[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • There are no repeated connections.
  • No two computers are connected by more than one cable.


solution : 

we just have to find the number of connected components .

class Solution {
public:
void bfs(vector<int>&visited , vector<int> adj[]  , int i)
{
    visited[i] = 1;
    queue<int>q;
    q.push(i);
    while(!q.empty())
    { 
        int node = q.front();
        q.pop();
        for(int x : adj[node])
        {
            if(!visited[x])
            {
                q.push(x);
            }
        }
    }

}
void dfs(vector<int>&visited , vector<int>adj[] , int i)
{
    visited[i] = 1;
    for(int x : adj[i])
    {
        if(!visited[x])
        {
            dfs(visited , adj , x);
        }
    }
}

    int makeConnected(int n, vector<vector<int>>& connections) {
            int size = connections.size();
            if(size < n-1)
            {
                return -1;
            }
            vector<int>adj[n];
            vector<int>visited(n, 0);
            for(int i = 0 ; i < size  ; i++)
            {
                adj[connections[i][0]].push_back(connections[i][1]);
                adj[connections[i][1]].push_back(connections[i][0]);
            }
            int count = 0;
            for(int i =0 ; i < n ; i++)
            {
                  if(!visited[i])
                  {
                      count++;
                    //   bfs(visited , adj , i );
                      dfs(visited , adj , i );
                  }
            }
            return count-1;

    }
};


Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...