Skip to main content

Frequncy Tracker Leetcode

 2671. Frequency Tracker

Design a data structure that keeps track of the values in it and answers some queries regarding their frequencies.

Implement the FrequencyTracker class.

  • FrequencyTracker(): Initializes the FrequencyTracker object with an empty array initially.
  • void add(int number): Adds number to the data structure.
  • void deleteOne(int number): Deletes one occurence of number from the data structure. The data structure may not contain number, and in this case nothing is deleted.
  • bool hasFrequency(int frequency): Returns true if there is a number in the data structure that occurs frequency number of times, otherwise, it returns false.

 

Example 1:

Input
["FrequencyTracker", "add", "add", "hasFrequency"]
[[], [3], [3], [2]]
Output
[null, null, null, true]

Explanation
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(3); // The data structure now contains [3]
frequencyTracker.add(3); // The data structure now contains [3, 3]
frequencyTracker.hasFrequency(2); // Returns true, because 3 occurs twice

Example 2:

Input
["FrequencyTracker", "add", "deleteOne", "hasFrequency"]
[[], [1], [1], [1]]
Output
[null, null, null, false]

Explanation
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.add(1); // The data structure now contains [1]
frequencyTracker.deleteOne(1); // The data structure becomes empty []
frequencyTracker.hasFrequency(1); // Returns false, because the data structure is empty

Example 3:

Input
["FrequencyTracker", "hasFrequency", "add", "hasFrequency"]
[[], [2], [3], [1]]
Output
[null, false, null, true]

Explanation
FrequencyTracker frequencyTracker = new FrequencyTracker();
frequencyTracker.hasFrequency(2); // Returns false, because the data structure is empty
frequencyTracker.add(3); // The data structure now contains [3]
frequencyTracker.hasFrequency(1); // Returns true, because 3 occurs once

 

Constraints:

  • 1 <= number <= 105
  • 1 <= frequency <= 105
  • At most, 2 * 105 calls will be made to adddeleteOne, and hasFrequency in total.

Solution : 

class FrequencyTracker {
public:
    unordered_map<int, int>map, frequency ;
    FrequencyTracker() {
        // FrequencyTracker frequencyTracker = new FrequencyTracker();
    }
 
    void add(int number) {
       
        map[number]++;
        int x = map[number];
        frequency[x-1] --;
        frequency[x] ++ ;
    }
 
    void deleteOne(int number) {
        if(map[number])
        {map[number]--;
            int x = map[number];
          frequency[x] ++ ;;
        frequency[x+1] --;
        }
    }
 
    bool hasFrequency(int k) {
     
        if(frequency[k])
            return true;
        return false;
         
    }
};

/**
* Your FrequencyTracker object will be instantiated and called as such:
* FrequencyTracker* obj = new FrequencyTracker();
* obj->add(number);
* obj->deleteOne(number);
* bool param_3 = obj->hasFrequency(frequency);
*/


Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...