Skip to main content

Minimum Deletions to Make Array Beautiful | Leetcode 2216 solution

 You are given a 0-indexed integer array nums. The array nums is beautiful if:

  • nums.length is even.
  • nums[i] != nums[i + 1] for all i % 2 == 0.

Note that an empty array is considered beautiful.

You can delete any number of elements from nums. When you delete an element, all the elements to the right of the deleted element will be shifted one unit to the left to fill the gap created and all the elements to the left of the deleted element will remain unchanged.

Return the minimum number of elements to delete from nums to make it beautiful.

 

Example 1:

Input: nums = [1,1,2,3,5]
Output: 1
Explanation: You can delete either nums[0] or nums[1] to make nums = [1,2,3,5] which is beautiful. It can be proven you need at least 1 deletion to make nums beautiful.

Example 2:

Input: nums = [1,1,2,2,3,3]
Output: 2
Explanation: You can delete nums[0] and nums[5] to make nums = [1,2,2,3] which is beautiful. It can be proven you need at least 2 deletions to make nums beautiful.

 

Constraints:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 105

solution:

class Solution {
public:
    int minDeletion(vector<int>& nums) {

        int size = nums.size();
        if(size ==1)
        {
            return 1;
        }
        int i =0 ;
        int j = 1;
        int count_i = 0; //effective index i
        int cnt = 0;
        while(j != size)
        {
            if(nums[i] == nums[j])
            {
                if(count_i %2 == 0)
                {
                    j++;  //if deleted , increase j only
                    cnt++;
                    continue;
                }
             
            }
            i = j;
            count_i++;
            j++;

        }
        // cout << count
        int effective_size = count_i+1;

    return (effective_size %2 == 0)? cnt : cnt+1;
     
    }
};


Comments

Popular posts from this blog

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...

Regular Expression Matching Leetcode Solution

Regular Expression Matching Given an input string s and a pattern p, implement regular expression matching with support for '.' and '*' where: '.' Matches any single character.​​​​ '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). Example 1: Input: s = "aa", p = "a"  Output: false  Explanation: "a" does not match the entire string "aa". Example 2: Input: s = "aa", p = "a*"  Output: true  Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa". Example 3: Input: s = "ab", p = ".*"  Output: true  Explanation: ".*" means "zero or more (*) of any character (.)". Constraints: 1 <= s.length <= 20 1 <= p.length <= 20 s contains only lowercase English letters. p contains only lowercase Englis...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...