// Online C++ compiler to run C++ program online
#include <bits/stdc++.h>
using namespace std;
string solve(string &s , unordered_map<string , char>map1)
{
char p;
if(s.substr(0 , 3) == "000")
{
p= 'd';
}
else
{
p = 'r';
}
string result = "";
for(int i = 3 ; i < s.length(); i+=3)
{
char x = map1[s.substr(i , 3)];
if(p == 'd')
{
if(x == 'U')
result.push_back('T');
else
result.push_back(x);
}
else
{
if(x == 'T')
result.push_back('U');
else
result.push_back(x);
}
}
return result;
}
void solve(string s )
{
return;
}
int main() {
unordered_map<string, char>map1 = {
{"001", 'C'} ,
{"010", 'G'},
{"011", 'A'},
{"101" , 'T'},
{"110", 'U'}
};
string s = "111001010110101011010101001";
// cout << s.length() << "\n";
string p = solve(s , map1);
cout << p << "\n";
return 0;
}
Given a positive integer n , find the pivot integer x such that: The sum of all elements between 1 and x inclusively equals the sum of all elements between x and n inclusively. Return the pivot integer x . If no such integer exists, return -1 . It is guaranteed that there will be at most one pivot index for the given input. Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist. Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic: int pivotInteger( int n ) { int sum = (( n )*( n + 1 ))/ 2 ; int i = 1 ; int j =...
Comments
Post a Comment