solution : School of Geometry | codechef problem | problem code : SNUG_FIT

codechef probelm :

problem code : SNUG_FIT


Once again, we have a lot of requests from coders for a challenging problem on geometry. Geometry expert Nitin is thinking about a problem with parabolas, icosahedrons, crescents and trapezoids, but for now, to encourage beginners, he chooses to work with circles and rectangles.

You are given two sequences A1,A2,,AN and B1,B2,,BN. You should choose a permutation P1,P2,,PN of the integers 1 through N and construct N rectangles with dimensions A1×BP1,A2×BP2,,AN×BPN. Then, for each of these rectangles, you should construct an inscribed circle, i.e. a circle with the maximum possible area that is completely contained in that rectangle.

Let S be the sum of diameters of these N circles. Your task is to find the maximum value of S.



Input

  • The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
  • The first line of each test case contains a single integer N.
  • The second line contains N space-separated integers A1,A2,,AN.
  • The third line contains N space-separated integers B1,B2,,BN.

Output

For each test case, print a single line containing one integer ― the maximum value of S. It is guaranteed that this value is always an integer.

Constraints

  • 1T50
  • 1N104
  • 1Ai,Bi109 for each valid i

Subtasks

Subtask #1 (20 points):

  • A1=A2==AN
  • B1=B2==BN

Subtask #2 (80 points): original constraints

Sample Input 1 

2
4
8 8 10 12
15 20 3 5
3
20 20 20
10 10 10

Sample Output 1 

30
30

Explanation

Example case 1: Four rectangles with dimensions 8×38×510×20 and 12×15 lead to an optimal answer.


solution : 

 #include <bits/stdc++.h>

using namespace std;


int main() {

int t;

cin >> t;

while(t--)

{

    int n ;

    cin >> n;

    int a[100000];

    int b[100000];

    for(int i =0 ; i < n ; i++)

    {

        cin >> a[i];

    }

    for(int i =0 ; i < n ; i++)

    {

        cin >> b[i];

    }

    sort(a , a+n);

    sort(b , b+n);

    long int sum_dia =0;

    for(int i =0 ; i < n ; i++)

    {

        sum_dia += (b[i]<a[i]?b[i]:a[i]);

        

    }

    cout << sum_dia << "\n";

}

return 0;

}


Comments