Skip to main content

solution : School of Geometry | codechef problem | problem code : SNUG_FIT

codechef probelm :

problem code : SNUG_FIT


Once again, we have a lot of requests from coders for a challenging problem on geometry. Geometry expert Nitin is thinking about a problem with parabolas, icosahedrons, crescents and trapezoids, but for now, to encourage beginners, he chooses to work with circles and rectangles.

You are given two sequences A1,A2,,AN and B1,B2,,BN. You should choose a permutation P1,P2,,PN of the integers 1 through N and construct N rectangles with dimensions A1×BP1,A2×BP2,,AN×BPN. Then, for each of these rectangles, you should construct an inscribed circle, i.e. a circle with the maximum possible area that is completely contained in that rectangle.

Let S be the sum of diameters of these N circles. Your task is to find the maximum value of S.



Input

  • The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
  • The first line of each test case contains a single integer N.
  • The second line contains N space-separated integers A1,A2,,AN.
  • The third line contains N space-separated integers B1,B2,,BN.

Output

For each test case, print a single line containing one integer ― the maximum value of S. It is guaranteed that this value is always an integer.

Constraints

  • 1T50
  • 1N104
  • 1Ai,Bi109 for each valid i

Subtasks

Subtask #1 (20 points):

  • A1=A2==AN
  • B1=B2==BN

Subtask #2 (80 points): original constraints

Sample Input 1 

2
4
8 8 10 12
15 20 3 5
3
20 20 20
10 10 10

Sample Output 1 

30
30

Explanation

Example case 1: Four rectangles with dimensions 8×38×510×20 and 12×15 lead to an optimal answer.


solution : 

 #include <bits/stdc++.h>

using namespace std;


int main() {

int t;

cin >> t;

while(t--)

{

    int n ;

    cin >> n;

    int a[100000];

    int b[100000];

    for(int i =0 ; i < n ; i++)

    {

        cin >> a[i];

    }

    for(int i =0 ; i < n ; i++)

    {

        cin >> b[i];

    }

    sort(a , a+n);

    sort(b , b+n);

    long int sum_dia =0;

    for(int i =0 ; i < n ; i++)

    {

        sum_dia += (b[i]<a[i]?b[i]:a[i]);

        

    }

    cout << sum_dia << "\n";

}

return 0;

}


Comments

Popular posts from this blog

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...

Regular Expression Matching Leetcode Solution

Regular Expression Matching Given an input string s and a pattern p, implement regular expression matching with support for '.' and '*' where: '.' Matches any single character.​​​​ '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). Example 1: Input: s = "aa", p = "a"  Output: false  Explanation: "a" does not match the entire string "aa". Example 2: Input: s = "aa", p = "a*"  Output: true  Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa". Example 3: Input: s = "ab", p = ".*"  Output: true  Explanation: ".*" means "zero or more (*) of any character (.)". Constraints: 1 <= s.length <= 20 1 <= p.length <= 20 s contains only lowercase English letters. p contains only lowercase Englis...