Skip to main content

solution : School of Geometry | codechef problem | problem code : SNUG_FIT

codechef probelm :

problem code : SNUG_FIT


Once again, we have a lot of requests from coders for a challenging problem on geometry. Geometry expert Nitin is thinking about a problem with parabolas, icosahedrons, crescents and trapezoids, but for now, to encourage beginners, he chooses to work with circles and rectangles.

You are given two sequences A1,A2,,AN and B1,B2,,BN. You should choose a permutation P1,P2,,PN of the integers 1 through N and construct N rectangles with dimensions A1×BP1,A2×BP2,,AN×BPN. Then, for each of these rectangles, you should construct an inscribed circle, i.e. a circle with the maximum possible area that is completely contained in that rectangle.

Let S be the sum of diameters of these N circles. Your task is to find the maximum value of S.



Input

  • The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
  • The first line of each test case contains a single integer N.
  • The second line contains N space-separated integers A1,A2,,AN.
  • The third line contains N space-separated integers B1,B2,,BN.

Output

For each test case, print a single line containing one integer ― the maximum value of S. It is guaranteed that this value is always an integer.

Constraints

  • 1T50
  • 1N104
  • 1Ai,Bi109 for each valid i

Subtasks

Subtask #1 (20 points):

  • A1=A2==AN
  • B1=B2==BN

Subtask #2 (80 points): original constraints

Sample Input 1 

2
4
8 8 10 12
15 20 3 5
3
20 20 20
10 10 10

Sample Output 1 

30
30

Explanation

Example case 1: Four rectangles with dimensions 8×38×510×20 and 12×15 lead to an optimal answer.


solution : 

 #include <bits/stdc++.h>

using namespace std;


int main() {

int t;

cin >> t;

while(t--)

{

    int n ;

    cin >> n;

    int a[100000];

    int b[100000];

    for(int i =0 ; i < n ; i++)

    {

        cin >> a[i];

    }

    for(int i =0 ; i < n ; i++)

    {

        cin >> b[i];

    }

    sort(a , a+n);

    sort(b , b+n);

    long int sum_dia =0;

    for(int i =0 ; i < n ; i++)

    {

        sum_dia += (b[i]<a[i]?b[i]:a[i]);

        

    }

    cout << sum_dia << "\n";

}

return 0;

}


Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...