Skip to main content

solution : Xor Equality | codechef | Problem Code: XOREQUAL

Xor Equality Problem Code: XOREQUAL

For a given N, find the number of ways to choose an integer x from the range [0,2N1] such that x(x+1)=(x+2)(x+3), where  denotes the bitwise XOR operator.

Since the number of valid x can be large, output it modulo 109+7.

Input

  • The first line contains an integer T, the number of test cases. Then the test cases follow.
  • The only line of each test case contains a single integer N.

Output

For each test case, output in a single line the answer to the problem modulo 109+7.

Constraints

  • 1T105
  • 1N105

Subtasks

Subtask #1 (100 points): Original Constraints

Sample Input 1 

2
1
2

Sample Output 1 

1
2

Explanation

Test Case 1: The possible values of x are {0}.

Test Case 2: The possible values of x are {0,2}.



solution : 

#include <bits/stdc++.h>

using namespace std;

#define l 1000000007;

int main() {

int t ;

cin.tie(0);

ios::sync_with_stdio(false);

cin >> t;

while(t--)

{

    long long int n ;

    cin >> n ;

   long  long int count = 1;

    for(int i = 1 ; i <= (n-1); i++ )

    {

        count = (count *2) % l;

    }

    cout << count << "\n";

}

return 0;

}


Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...