Problem
Given a undirected graph find the number of connected components.
Input
First line of the input is 't'- number of test case.
Followed by N, the number of vertices (Numbered 0 to N-1).
Followed by 'e' number of edges.
Followed by description of 'e' edges in the form 'a b' I.e. an edge exist between vertex a and b.
Constraints:
T=10
2 <= N <= 100000
0 <= e <= N/2
Output
One line per test case, number of connected components in the graph.
Example
Input: 2 4 2 0 1 0 2 8 0 Output: 2 8
solution:
#include <bits/stdc++.h>
using namespace std;
void dfs(int i , vector<bool>&visited , vector<int>graph[])
{
visited[i] = true;
for(int k : graph[i] )
{
if(!visited[k])
{
dfs(k, visited , graph);
}
}
}
int main() {
int t;
cin >> t;
while(t--)
{
int n ;
cin >> n;
int e;
cin >> e;
vector<int>graph[n];
if(e != 0)
{
for(int i = 0 ; i < e ; i++)
{
int a , b ;
cin >> a >> b;
graph[a].push_back(b);
graph[b].push_back(a);
}
}
vector<bool>visited(n , false);
int count =0;
for(int i = 0 ; i < n ; i++)
{
if(!visited[i])
{
count++;
dfs(i , visited , graph);
}
}
cout << count << "\n";
}
return 0;
}
Comments
Post a Comment