Skip to main content

DFS of Graph | GeeksforGeeks solution

 Given a connected undirected graph. Perform a Depth First Traversal of the graph.

Note: Use recursive approach to find the DFS traversal of the graph starting from the 0th vertex from left to right according to the graph..


Example 1:

Input:

Output: 0 1 2 4 3
Explanation: 
0 is connected to 1, 2, 4.
1 is connected to 0.
2 is connected to 0.
3 is connected to 4.
4 is connected to 0, 3.
so starting from 0, it will go to 1 then 2
then 4, and then from 4 to 3.
Thus dfs will be 0 1 2 4 3.

Example 2:

Input:

Output: 0 1 2 3
Explanation:
0 is connected to 1 , 3.
1 is connected to 2. 
2 is connected to 1.
3 is connected to 0. 
so starting from 0, it will go to 1 then 2
then back to 0 then 0 to 3
thus dfs will be 0 1 2 3. 


Your task:
You dont need to read input or print anything. Your task is to complete the function dfsOfGraph() which takes the integer V denoting the number of vertices and adjacency list as input parameters and returns  a list containing the DFS traversal of the graph starting from the 0th vertex from left to right according to the graph.


Expected Time Complexity: O(V + E)
Expected Auxiliary Space: O(V)


Constraints:
1 ≤ V, E ≤ 104



Ans: 

   In DFS , we first travel the first given or starting vertex and then anyone vertex adjacent to it. now we traverse other vertex adjacent to second vertex i.e we go into the depth .

code for DFS is :


class Solution {

  public:

    // Function to return a list containing the DFS traversal of the graph.

   void dfs(int v , vector<int>adj[] , vector<bool>&visited ,vector<int>&ans)

   {

       visited[v] = true;

       ans.push_back(v);

       for(int i : adj[v])

       {

           if(!visited[i])

           {

               dfs(i , adj , visited , ans);

           }

       }

       

   }

    vector<int> dfsOfGraph(int V, vector<int> adj[]) {

         

         vector<int>ans;

         vector<bool>visited(V , false);

         for(int i = 0 ; i < V ; i++)

         {

             if(!visited[i])

             {

                 dfs(i , adj , visited , ans);

             }

         }

         return ans;

    }

    

};




References: https://practice.geeksforgeeks.org/problems/depth-first-traversal-for-a-graph/1

Comments

Popular posts from this blog

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...

Regular Expression Matching Leetcode Solution

Regular Expression Matching Given an input string s and a pattern p, implement regular expression matching with support for '.' and '*' where: '.' Matches any single character.​​​​ '*' Matches zero or more of the preceding element. The matching should cover the entire input string (not partial). Example 1: Input: s = "aa", p = "a"  Output: false  Explanation: "a" does not match the entire string "aa". Example 2: Input: s = "aa", p = "a*"  Output: true  Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa". Example 3: Input: s = "ab", p = ".*"  Output: true  Explanation: ".*" means "zero or more (*) of any character (.)". Constraints: 1 <= s.length <= 20 1 <= p.length <= 20 s contains only lowercase English letters. p contains only lowercase Englis...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...