Skip to main content

Insert a node in BST

 Given a BST and a key K. If K is not present in the BST, Insert a new Node with a value equal to K into the BST. 

Note: If K is already present in the BST, don't modify the BST.

Example 1:

Input:
     2
   /   \
  1     3
K = 4
Output: 1 2 3 4
Explanation: After inserting the node 4
Inorder traversal will be 1 2 3 4.

Example 2:

Input:
        2
      /   \
     1     3
             \
              6
K = 4
Output: 1 2 3 4 6
Explanation: After inserting the node 4
Inorder traversal of the above tree
will be 1 2 3 4 6.


Your Task:
You don't need to read input or print anything. Your task is to complete the function insert() which takes the root of the BST and Key K as input parameters and returns the root of the modified BST after inserting K. 
Note: The generated output contains the inorder traversal of the modified tree.


solution : 

Node* insert(Node* root, int Key) {

        

        if(root == NULL)

         return new Node(Key);

         

        

        if(root->data < Key )

        {

            root->right = insert(root->right , Key);

        }

        

        if(root->data > Key)

        {

             root->left = insert(root->left , Key);

            

        }

        

         return root;

    

          

}



Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...