Skip to main content

Solution : Count ways to reach the n'th stair | Dynamic programming | geeksforgeeks

 There are n stairs, a person standing at the bottom wants to reach the top. The person can climb either 1 stair or 2 stairs at a time. Count the number of ways, the person can reach the top (order does matter).

Example 1:

Input:
n = 4
Output: 5
Explanation:
You can reach 4th stair in 5 ways. 
Way 1: Climb 2 stairs at a time. 
Way 2: Climb 1 stair at a time.
Way 3: Climb 2 stairs, then 1 stair
and then 1 stair.
Way 4: Climb 1 stair, then 2 stairs
then 1 stair.
Way 5: Climb 1 stair, then 1 stair and
then 2 stairs.

Example 2:

Input:
n = 10
Output: 89 
Explanation: 
There are 89 ways to reach the 10th stair.

Your Task:
Complete the function countWays() which takes the top stair number m as input parameters and returns the answer % 10^9+7.

Expected Time Complexity : O(n)
Expected Auxiliary Space: O(1)

Constraints:
1 ≤ n ≤ 104



solution :

 

In this solution , i have fibbonacci approach.

The function int count() is the solution of fibbonacci series using memoization methord of dynamic programming.



class Solution

{

    public:

    //Function to count number of ways to reach the nth stair.

    long long int t = 10e9 +7;

    int count(int n , int dp[])

    {

        if(n <=1)

        return dp[n] =1;

        else

        if( dp[n] != -1)

         return dp[n] ;

        else

         dp[n] = (count(n-1 , dp) + count(n-2 , dp))%1000000007;

         return dp[n] ;

    }




    int countWays(int n)

    {    

        int dp[n+1] ;

        memset(dp , -1 , sizeof (dp));

        count(n , dp);

        return dp[n] %1000000007 ;

        

        

    }

};




Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...

leetcode 48 solution

  48 .  Rotate Image You are given an  n x n  2D  matrix  representing an image, rotate the image by  90  degrees (clockwise). You have to rotate the image  in-place , which means you have to modify the input 2D matrix directly.  DO NOT  allocate another 2D matrix and do the rotation.   Example 1: Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] Output: [[7,4,1],[8,5,2],[9,6,3]] Example 2: Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]] Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]   Constraints: n == matrix.length == matrix[i].length 1 <= n <= 20 -1000 <= matrix[i][j] <= 1000 solution: class Solution { public:     void swap(int& a , int &b)     {         int c ;         c = a;         a = b;         b = c;     }     void transpose (vector<vector<int>...