98. Validate Binary Search Tree
Given the root
of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3] Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -231 <= Node.val <= 231 - 1
solution :
i have solved it using the property of BST that is inorder traversal of
binary search tree gives an array of sorted order.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
void inorder(TreeNode* root , vector<int>&result)
{
if(!root)
{
return;
}
inorder(root->left , result );
result.push_back(root->val);
inorder(root->right , result);
}
bool isValidBST(TreeNode* root) {
vector<int>result;
inorder(root , result);
for(int i = 1 ; i < result.size() ; i++)
{
if(result[i] <= result[i-1])
return false;
}
return true;
}
};
Comments
Post a Comment