Skip to main content

Find Eventual Safe States | leetcode 802 solution | detect cycle in directed graph

 Find Eventual Safe States

There is a directed graph of n nodes with each node labeled from 0 to n - 1. The graph is represented by a 0-indexed 2D integer array graph where graph[i] is an integer array of nodes adjacent to node i, meaning there is an edge from node i to each node in graph[i].

A node is a terminal node if there are no outgoing edges. A node is a safe node if every possible path starting from that node leads to a terminal node (or another safe node).

Return an array containing all the safe nodes of the graph. The answer should be sorted in ascending order.

 

Example 1:

Illustration of graph

Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
Output: [2,4,5,6]
Explanation: The given graph is shown above.
Nodes 5 and 6 are terminal nodes as there are no outgoing edges from either of them.
Every path starting at nodes 2, 4, 5, and 6 all lead to either node 5 or 6.

Example 2:

Input: graph = [[1,2,3,4],[1,2],[3,4],[0,4],[]]
Output: [4]
Explanation:
Only node 4 is a terminal node, and every path starting at node 4 leads to node 4.

 

Constraints:

  • n == graph.length
  • 1 <= n <= 104
  • 0 <= graph[i].length <= n
  • 0 <= graph[i][j] <= n - 1
  • graph[i] is sorted in a strictly increasing order.
  • The graph may contain self-loops.
  • The number of edges in the graph will be in the range [1, 4 * 104].

solution:


The solution is based on detecting cycle in a directed graph using dfs. if any particular node make a cycle after going through dfs , it will be not be push into vector<int>result.

class Solution {
public:
    bool dfs(vector<bool>&visited , vector<bool>&visiteddfs , int i , vector<vector<int>>&graph)
    {
        visited[i]= true;
        visiteddfs[i] = true;
        vector<int>x = graph[i];
        for(int i = 0 ; i < x.size(); i++)
        {
            if(!visited[x[i]])
            {
                if(dfs(visited, visiteddfs , x[i] , graph))
                    return true;

            }
            else
            {
                if(visiteddfs[x[i]])
                {
                     return true;
                }

            }

        }
        visiteddfs[i] = false;
        return false;

    }
    vector<int> eventualSafeNodes(vector<vector<int>>& graph) {
        int V = graph.size();
        vector<bool>visited(V , false);
        vector<bool>visiteddfs(V, false);
        vector<int>result;
        for(int i = 0 ; i < V ; i++)
        {
            if(!dfs(visited , visiteddfs , i , graph))
                result.push_back(i);

        }
        return result;
    }
};

Comments

Popular posts from this blog

[PDF DOWNLOAD] AKTU Quantum series data structure b.tech 2nd year download

  All AKTU Quantums are available here. Get your hands on AKTU Quantums and boost your grades in AKTU semester exams. You can either search them category wise or can use the search bar or can manually search on this page. Download aktu second year quantum pdf data structures  download  data structures quantum aktu download aktu data structures quantum click here to download  write in comment section if you want quantum of any other subject.

Root to Leaf Paths | binary tree | geeksforgeeks solution

  Root to Leaf Paths Given a Binary Tree of size N, you need to find all the possible paths from root node to all the leaf node's of the binary tree. Example 1: Input: 1 / \ 2 3 Output: 1 2 #1 3 # Explanation: All possible paths: 1->2 1->3 Example 2: Input:   10   / \   20 30   / \   40 60 Output: 10 20 40 #10 20 60 #10 30 # Your Task: Your task is to complete the function  Paths()  that takes the root node as an argument and return all the possible path. (All the path are printed '#' separated by the driver's code.) Note:  The return type cpp:  vector java:  ArrayList> python:  list of list Expected Time Complexity:  O(N). Expected Auxiliary Space:  O(H). Note:  H is the height of the tree. Constraints: 1<=N<=10 3 Note:  The  Input/Ouput  format and  Example  given, are used for the system'...

2485. Find the Pivot Integer | Binary search

  Given a positive integer   n , find the   pivot integer   x   such that: The sum of all elements between  1  and  x  inclusively equals the sum of all elements between  x  and  n  inclusively. Return  the pivot integer  x . If no such integer exists, return  -1 . It is guaranteed that there will be at most one pivot index for the given input.   Example 1: Input: n = 8 Output: 6 Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21. Example 2: Input: n = 1 Output: 1 Explanation: 1 is the pivot integer since: 1 = 1. Example 3: Input: n = 4 Output: -1 Explanation: It can be proved that no such integer exist.   Constraints: 1 <= n <= 1000 Solution : class Solution { publ ic:     int pivotInteger( int n ) {         int sum = (( n )*( n + 1 ))/ 2 ;         int i = 1 ;         int j =...